MAT 536 SPRING 2021 EXTRA CREDIT

1. Application of Hadamard formula

1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R > 0. Prove that if the series

$$\sum_{n=0}^{\infty} f^{(n)}(z)$$

converges for some $z_0 \in \mathbb{D}_R(0)$, then in fact $R = \infty$, the function f is entire and this series converges uniformly on every bounded subset of \mathbb{C} .

2. Let f(z) be as in the previous problem. Show that if the sequence $\{\sqrt[n]{|f^{(n)}(z)|}\}$ is bounded at some point $z_0 \in \mathbb{D}_R(0)$, than again $R = \infty$, the function f is entire and the sequence is bounded at all z. Moreover, show that in this case $\limsup \sqrt[n]{|f^{(n)}(z)|}$ is the same for all z.

2. Behavior of power series on their circle of convergence

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R = 1 and let \mathbb{D} be an open unit disk with the center at the origin. A point ζ on the unit circle $S^1 = \partial \mathbb{D}$ is called a *regular point* for a holomorphic function f on \mathbb{D} , if there is an open disk $\mathbb{D}_r(z_0)$ of radius r > 0 with center $z_0, |z_0| < 1$, such that $\zeta \in \mathbb{D}_r(z_0)$ and corresponding power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

converges absolutely on $\mathbb{D}_r(z_0)$. In particular, $\lim_{z\to\zeta} f(z)$ from the inside exists. Otherwise, the point $\zeta \in S^1$ is called *singular*.

1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R = 1 and $z_0 \in \mathbb{D}$. Prove that for $|z - z_0| < 1 - |z_0|$

$$f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$
, where $b_n = \frac{f^{(n)}(z_0)}{n!}$.

In particular, the series in the right-hand side is absolutely convergent.

(Hint: Use $z^n = (z - z_0 + z_0)^n$.)

2*. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R = 1. Prove that $f(z) = (1-z) \sum_{n=0}^{\infty} s_n z^n$, where $s_n = \sum_{k=0}^{n} a_k$.

- **3*.** Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R = 1. Prove that if all coefficients a_n are real and the series $\sum_{n=0}^{\infty} a_n$ diverges to ∞ or $-\infty$, the z = 1 is a singular point. (Hint: Use the previous problem.)
- **4*.** Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with real a_n and with the radius of convergence R = 1. Show by example that a weaker condition $|a_0 + \cdots + a_n| \to \infty$ does not guarantee that z = 1 is a singular point.
- **5*.** Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with with real a_n and with the radius of convergence R = 1. Prove that if coefficients $a_n \ge 0$ for all n, then z = 1 is a singular point (Pringsheim theorem). (Hint: Use Problem 1.)
- **6*.** Prove that for the function $f(z) = \sum_{n=0}^{\infty} z^{2^n}$ every point on the unit circle is singular.

 $\mathbf{2}$